Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(27): 17464-17471, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278132

RESUMO

A one-compartment H2O2 photofuel cell (PFC) with a photoanode based on InGaN nanowires (NWs) is introduced for the first time. The electrocatalytic and photoelectrocatalytic properties of the InGaN NWs are studied in detail by cyclic voltammetry, current versus time measurements, photovoltage measurements, and electrochemical impedance spectroscopy. In parallel, IrO x (OH) y as the co-catalyst on the InGaN NWs is evaluated to boost the catalytic activity in the dark and light. For the PFC, Ag is the best as the cathode among Ag, Pt, and glassy carbon. The PFC operates in the dark as a conventional fuel cell (FC) and under illumination with 25% increased electrical power generation at room temperature. Such dual operation is unique, combining FC and PFC technologies for the most flexible use.

2.
ACS Appl Mater Interfaces ; 13(6): 7517-7528, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33538580

RESUMO

An anisotropic piezoelectric response is demonstrated from InGaN nanowires (NWs) over a pyramid-textured Si(100) substrate with an interfacet composition and topography modulation induced by stationary molecular beam epitaxy growth conditions, taking advantage of the unidirectional source beam flux. The variations of InGaN NWs between the pyramid facets are verified in terms of morphology, element distribution, and crystalline properties. The piezoelectric response is investigated by electrical atomic force microscopy (AFM) with a statistic analyzing method. Representative pyramids from the ensemble, on top of which InGaN NWs grown with a substrate held at an oblique angle, were characterized for understanding and confirming the degree of anisotropy. The positive deviated oscillation of the peak force error is identified as a measure of the effective AFM tip/NW interaction with respect to the electrical contact and mechanical deformation. The Schottky contact between the metal-coated AFM tip and the NWs on the different facets reveals distinctions consistent with the interfacet composition variation. The interfacet variation of the piezoelectric response of the InGaN NWs is first evaluated by electrical AFM under zero bias. The average current monotonically depends on the scan frequency, which determines the average peak force error, that is, mechanical deformation, with a facet characteristic slope. A piezoelectric nanogenerator device is fabricated out of a sample with an ensemble of pyramids, which exhibits anisotropic output under periodic directional pressing. This work provides a universal strategy for the synthesis of composite semiconductor materials with an anisotropic piezoelectric response.

3.
ACS Omega ; 5(50): 32800-32805, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376918

RESUMO

We systematically study the sensitivity and noise of an InN/InGaN quantum dot (QD) extended gate field-effect transistor (EGFET) with super-Nernstian sensitivity and directly compare the performance with potentiometric sensing. The QD sensor exhibits a sensitivity of -80 mV/decade with excellent linearity over a wide concentration range, assessed for chloride anion detection in 10-4 to 0.1 M KCl aqueous solutions. The sensitivity and linearity are reproduced for the EGFET and direct open-circuit potential (OCP) readout. The EGFET noise in the saturated regime is smaller than the OCP noise, while the EGFET noise in the linear regime is largest. This highlights EGFET operation in the saturated regime for most precise measurements and the lowest limit of detection and the lowest limit of quantification, which is attributed to the low-impedance current measurement at a relatively high bias and the large OCP for the InN/InGaN QDs.

4.
Sci Rep ; 10(1): 5930, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246077

RESUMO

We directly measure the electric dipole of InN quantum dots (QDs) grown on In-rich InGaN layers by Kelvin probe force microscopy. This significantly advances the understanding of the superior catalytic performance of InN/InGaN QDs in ion- and biosensing and in photoelectrochemical hydrogen generation by water splitting and the understanding of the important third-generation InGaN semiconductor surface in general. The positive surface photovoltage (SPV) gives an outward QD dipole with dipole potential of the order of 150 mV, in agreement with previous calculations. After HCl-etching, to complement the determination of the electric dipole, a giant negative SPV of -2.4 V, significantly larger than the InGaN bandgap energy, is discovered. This giant SPV is assigned to a large inward electric dipole, associated with the appearance of holes, matching the original QD lateral size and density. Such surprising result points towards unique photovoltaic effects and photosensitivity.

5.
Nanoscale ; 12(16): 8836-8846, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32255140

RESUMO

We demonstrate multi-wavelength light emission from InGaN nanowires (NWs) monolithically grown on pyramid-textured Si(100) substrates by plasma-assisted molecular beam epitaxy (MBE) under stationary conditions. Taking advantage of the highly unidirectional source material beam fluxes, the In content of the NWs is tuned on the different pyramid facets due to varied incidence angle. This is confirmed by distinct NW morphologies observed by scanning electron microscopy (SEM) and by energy-dispersive X-ray (EDX) element mapping. Photoluminescence and cathodoluminescence (CL) reveal multiple lines originating from InGaN NWs on the different pyramid facets. The anomalous temperature dependence of the emission wavelength results from carrier redistribution between localized or confined states, spontaneously formed within the NWs due to composition fluctuations, verified by high-resolution EDX elemental analysis. First-principles calculations show that the pyramid facet edges act as a barrier for atom migration and enhance atom incorporation. This leads to uniform composition within the facets for not too high a growth temperature, consistent with the SEM, EDX and CL results. At elevated temperature, InGaN decomposition and In desorption are enhanced on facets with low growth rate, accompanied by Ga inter-facet migration, leading to non-uniform composition over the Ga migration length which is deduced to be around 580 nm. Our study presents a method for the fabrication of multi-wavelength light sources by highly unidirectional MBE on textured Si substrates towards color temperature-tunable solid-state lighting and RGB light-emitting diode displays.

6.
Sci Rep ; 9(1): 14489, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601966

RESUMO

We introduce a novel concept for the design of functional surfaces of materials: Spatial surface charge engineering. We exploit the concept for an all-solid-state, epitaxial InN/InGaN-on-Si reference electrode to replace the inconvenient liquid-filled reference electrodes, such as Ag/AgCl. Reference electrodes are universal components of electrochemical sensors, ubiquitous in electrochemistry to set a constant potential. For subtle interrelation of structure design, surface morphology and the unique surface charge properties of InGaN, the reference electrode has less than 10 mV/decade sensitivity over a wide concentration range, evaluated for KCl aqueous solutions and less than 2 mV/hour long-time drift over 12 hours. Key is a nanoscale charge balanced surface for the right InGaN composition, InN amount and InGaN surface morphology, depending on growth conditions and layer thickness, which is underpinned by the surface potential measured by Kelvin probe force microscopy. When paired with the InN/InGaN quantum dot sensing electrode with super-Nernstian sensitivity, where only structure design and surface morphology are changed, this completes an all-InGaN-based electrochemical sensor with unprecedented performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...